Files

75 lines
2.1 KiB
Python
Raw Permalink Normal View History

2025-02-20 14:20:51 -03:00
import asyncio
2025-02-20 14:16:07 -03:00
import logging
import os
import time
2025-02-20 14:20:51 -03:00
2025-02-20 14:16:07 -03:00
import yaml
from browser_use import Agent
2025-02-20 14:20:51 -03:00
from dotenv import load_dotenv
from langchain.memory import ConversationBufferMemory
2025-02-20 14:16:07 -03:00
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.vectorstores import FAISS
2025-02-20 14:20:51 -03:00
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
2025-02-20 14:16:07 -03:00
load_dotenv()
2025-02-20 14:20:51 -03:00
logging.basicConfig(
level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s'
)
2025-02-20 14:16:07 -03:00
with open('config.yaml') as f:
config = yaml.safe_load(f)
2025-02-20 14:20:51 -03:00
2025-02-20 14:16:07 -03:00
def load_documents():
loader = DirectoryLoader(config['documents_dir'], glob="**/*.txt")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
return text_splitter.split_documents(docs)
2025-02-20 14:20:51 -03:00
2025-02-20 14:16:07 -03:00
def setup_rag():
docs = load_documents()
vectorstore = FAISS.from_documents(docs, OpenAIEmbeddings())
return vectorstore.as_retriever()
2025-02-20 14:20:51 -03:00
2025-02-20 14:16:07 -03:00
memory = ConversationBufferMemory()
2025-02-20 14:20:51 -03:00
2025-02-20 14:16:07 -03:00
def generate_response(query):
retriever = setup_rag()
relevant_docs = retriever.get_relevant_documents(query)
context = "\n\n".join([doc.page_content for doc in relevant_docs])
2025-02-20 14:20:51 -03:00
2025-02-20 14:16:07 -03:00
memory.save_context({"input": query}, {"output": ""})
history = memory.load_memory_variables({})
2025-02-20 14:20:51 -03:00
llm = ChatOpenAI(
model=config['deepseek']['model'], api_key=config['deepseek']['api_key']
)
response = llm.invoke(
f"Context: {context}\n\nHistory: {history}\n\nQuestion: {query}"
)
2025-02-20 14:16:07 -03:00
return f"{config['bot_disclaimer']}\n\n{response.content}"
2025-02-20 14:20:51 -03:00
2025-02-20 14:16:07 -03:00
async def process_messages():
agent = Agent(
llm=ChatOpenAI(model="gpt-4o"),
2025-02-20 14:20:51 -03:00
task="Log in to LinkedIn, go to messages, check for new messages, and reply based on the provided knowledge base.",
2025-02-20 14:16:07 -03:00
)
while True:
try:
result = await agent.run()
logging.info(f"Agent result: {result}")
time.sleep(60)
except Exception as e:
logging.error(f"Error: {str(e)}")
time.sleep(300)
2025-02-20 14:20:51 -03:00
2025-02-20 14:16:07 -03:00
if __name__ == "__main__":
logging.info("Starting bot...")
asyncio.run(process_messages())