75 lines
2.1 KiB
Python
75 lines
2.1 KiB
Python
import asyncio
|
|
import logging
|
|
import os
|
|
import time
|
|
|
|
import yaml
|
|
from browser_use import Agent
|
|
from dotenv import load_dotenv
|
|
from langchain.memory import ConversationBufferMemory
|
|
from langchain_community.document_loaders import DirectoryLoader
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
load_dotenv()
|
|
logging.basicConfig(
|
|
level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s'
|
|
)
|
|
|
|
with open('config.yaml') as f:
|
|
config = yaml.safe_load(f)
|
|
|
|
|
|
def load_documents():
|
|
loader = DirectoryLoader(config['documents_dir'], glob="**/*.txt")
|
|
docs = loader.load()
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
|
return text_splitter.split_documents(docs)
|
|
|
|
|
|
def setup_rag():
|
|
docs = load_documents()
|
|
vectorstore = FAISS.from_documents(docs, OpenAIEmbeddings())
|
|
return vectorstore.as_retriever()
|
|
|
|
|
|
memory = ConversationBufferMemory()
|
|
|
|
|
|
def generate_response(query):
|
|
retriever = setup_rag()
|
|
relevant_docs = retriever.get_relevant_documents(query)
|
|
context = "\n\n".join([doc.page_content for doc in relevant_docs])
|
|
|
|
memory.save_context({"input": query}, {"output": ""})
|
|
history = memory.load_memory_variables({})
|
|
|
|
llm = ChatOpenAI(
|
|
model=config['deepseek']['model'], api_key=config['deepseek']['api_key']
|
|
)
|
|
response = llm.invoke(
|
|
f"Context: {context}\n\nHistory: {history}\n\nQuestion: {query}"
|
|
)
|
|
return f"{config['bot_disclaimer']}\n\n{response.content}"
|
|
|
|
|
|
async def process_messages():
|
|
agent = Agent(
|
|
llm=ChatOpenAI(model="gpt-4o"),
|
|
task="Log in to LinkedIn, go to messages, check for new messages, and reply based on the provided knowledge base.",
|
|
)
|
|
while True:
|
|
try:
|
|
result = await agent.run()
|
|
logging.info(f"Agent result: {result}")
|
|
time.sleep(60)
|
|
except Exception as e:
|
|
logging.error(f"Error: {str(e)}")
|
|
time.sleep(300)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.info("Starting bot...")
|
|
asyncio.run(process_messages())
|